Addressing the Safety Issues Related to Air Transportation of Lithium-Ion Batteries with Effective Engineered Thermal Management Solutions

33rd Annual International Battery Seminar & Exhibit

Richard Clark richard.clark@morganplc.com
Alysha Thomas alysha.thomas@morganplc.com
Contents

• Overview of Morgan Advanced Materials
• The extent of the challenge
• Overview of legislation
• Materials overview
• Engineered solutions
• Questions
Morgan Advanced Materials

Founded in England in 1856
Stock symbol on LON: MGAM
2015 revenue: GBP912 million (USD1.3 billion)
2 Divisions and 6 Global Business Units
Thermal Ceramics, including Fire Protection: GBP372 million
Focus on technically demanding, growth markets

- Energy
- Transportation
- Electronics
- Security and Defence
- Healthcare
- Industrial
- Petrochemical
Global Business Units

<table>
<thead>
<tr>
<th>Business Unit</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Ceramics</td>
<td>✓</td>
</tr>
<tr>
<td>Molten Metal Systems</td>
<td></td>
</tr>
<tr>
<td>Electrical Carbon</td>
<td>✓</td>
</tr>
<tr>
<td>Seals and Bearings</td>
<td></td>
</tr>
<tr>
<td>Technical Ceramics</td>
<td>✓</td>
</tr>
<tr>
<td>Composites and Defense Systems</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ indicates GBU with one or more LIB industry solutions
Thermal management solutions are wide ranging

- **FIBER**
 - Bulk
 - Blanket
 - Modules
 - Converted
 - Paper

- **IFB & FIREBRICK**
 - JM, K & TJM Grades

- **MONOLITHICS**
 - Dense Monolithics
 - LW Monolithics
 - Special Shapes

- **SPECIALTIES**
 - Heat Shields
 - Graphite Insulation
 - Engineered Insulation
 - Microporous Insulation

Morgan engineers and installs high performance insulation in operating environments from -70°C to 3000°C
Thermal applications include: Engine encasement; APU enclosures; landing gear struts; FDR / CVR enclosures; insulation of fuel, oil and hydraulic lines and high temperature tubing and piping.
Contents

• Overview of Morgan Advanced Materials
• The extent of the challenge
• Overview of legislation
• Materials overview
• Engineered solutions
• Questions
Batteries on an aircraft

Permanently installed batteries:
- FDR/CVR;
- Emergency Locator Transmitter;
- Automated External Defibrillator;
- Flashlights;
- A/C systems

Batteries in the cabin:
- Notebook computers;
- Tablets;
- MP3 players;
- Mobile phones;
- Cordless devices;
- Cameras;
- Spare Batteries

Batteries in the hold (restricted to cargo planes):
- Installed in portable devices;
- Installed in larger devices;
- Packed separately

Growing number of incidents

Between March 20, 1991 and January 15, 2016, 171 air/airport incidents involving batteries carried as cargo or baggage have been recorded by FAA.

Data source:
http://www.faa.gov/about/office_org/headquarters_offices/ash/ash_programs/hazmat/aircarrier_info/media/battery_incident_chart.pdf

Derived from presentation “Navigating the Regulatory Jungle”: Hwang and Leary, USDOT, Baltimore, 2015
Catastrophic events attributed to lithium-ion batteries

- Fire erupted in a cargo plane (UPS – DC8) that landed in Philadelphia on February 7, 2006 – airplane destroyed

- A cargo plane (UPS – B747) with 81,000 lithium batteries caught fire and crashed after it left Dubai on September 3, 2010 – airplane destroyed, 2 crew members killed

- A cargo jet (Asiana – B747) crashed into the East China Sea on July 28, 2011, after the crew reported a fire on board – airplane destroyed, 2 crew members killed

Contents

• Overview of Morgan Advanced Materials
• The extent of the challenge
• Overview of legislation
• Materials overview
• Engineered solutions
• Questions
Legislation history – Primary Lithium (UN 3090)

- April 28, 1999 Fire at LAX - 120,000 lithium primary cells led to issue of FAA DGAB-00-02 on September 7, 2000

- Subsequent studies showed that lithium metal primary cell fires cannot be suppressed by halon

http://phmsa.dot.gov/hazmat/regs/rulemaking/archive/hm-new

Legislation history – Lithium-Ion (UN 3480)

- Lithium batteries (both UN 3090 and UN 3480) are currently classified as Class 9 hazardous materials in Title 49 CFR, Hazardous Materials Regulations (HMR) and the ICAO Technical Instructions.

- FAA (SAFO 16001) supports recommendations that before operators engage in the transport of lithium ion batteries as cargo on passenger aircraft, or lithium ion or lithium metal batteries on cargo aircraft, they should be aware that ICAO and major airframe manufacturers (Boeing and Airbus) have recommended that operators perform safety risk assessments in order to establish whether, or how, they can manage the risk associated with the transport of these batteries.

- Transportation by air of lithium-ion batteries is not currently banned in either cargo or passenger aircraft. However, this is about to change.

http://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/media/2016/SAFO16001.pdf
New legislation with effect from April 1, 2016

- On February 22, 2016, the ICAO Council passed a prohibition on lithium ion batteries (UN 3480) on passenger aircraft as cargo that goes into effect on April 1, 2016.

- ICAO “Technical Instructions for the Safe Transport of Dangerous Goods by Air” 2015-2016 (Doc 9284) incorporating corrigenda and addenda up to and including addendum number 4 (February 23, 2016) include the above and other new requirements which include:
 - Lithium ion cells and batteries must be offered for transport at a state of charge (SoC) not exceeding 30% of their rated design capacity
 - Details related to acceptable packing and labeling

http://www.icao.int/Newsroom/Pages/ICAO-Council-Prohibits-Lithium-Ion-Cargo-Shipments-on-Passenger-Aircraft.aspx
Contents

• Overview of Morgan Advanced Materials
• The extent of the challenge
• Overview of legislation
• Materials overview
• Engineered solutions
• Questions
Types of High Temperature Insulation Fibers

High Temperature Insulation

Amorphous

Alkaline Earth Silicate (AES)
- Melt-spun
 - CaO, MgO, SiO₂, ZrO₂
 - Superwool® Plus, Superwool® HT

Crystalline

Aluminosilicate (ASW / RCF)
- Melt-spun / blown
 - Al₂O₃, SiO₂, (ZrO₂)

Polycrystalline (PCW)
- Sol-gel
 - Al₂O₃
- Kaowool®
- Alphawool®

ASW/RCF invented 1942
PCW invented 1969
AES invented 1986 (Microporous invented 1958)

Key Advantages of Superwool® over RCF:
- Low bio-persistence
- Low shrinkage up to classification temperature
- Low thermal conductivity
What is microporous insulation?

• A low density powder comprised of heat resistant particles and high temperature fibers compressed to form a microporous structure
• The most efficient insulation commercially available for a wide temperature range, engineered to control all three modes of heat transfer – convection, conduction and radiation
• Inorganic material, recyclable and safe from an H&S perspective
Material optimization / application engineering

Key Selection Criteria
• Application temperature
• Chemical Resistance
• Environmental Factors
• Installed weight and thickness
• Installation requirements
• Initial and total cost of ownership

Insulating Value

Best

Structural Aspects

Strongest
Thermal conductivity comparison of WDS microporous insulation products vs. other types of insulating products

- Perlite (granular)
- Mineral Wool (100 Kg/m³)
- RCF blanket (130 Kg/m³)
- Low shot AES blanket (130 Kg/m³)
- LD Calcium Silicate
- AES fiber board (300 Kg/m³)
- Opacified LD Calcium Silicate
- Aerogel blanket
- WDS° insulation
Contents

• Overview of Morgan Advanced Materials
• The extent of the challenge
• Overview of legislation
• Materials overview
 • Engineered solutions
• Questions
Aviation industry safety challenges with Lithium Ion

6 billion Lithium Ion cells were manufactured in 2015 – 30% were transported by air

<table>
<thead>
<tr>
<th>Situation</th>
<th>Immediate consequence</th>
<th>Ultimate consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal runaway in packed Lithium Ion cell</td>
<td>Transmission to large number of adjacent cells</td>
<td>Fire / explosion / pressure wave</td>
</tr>
<tr>
<td>Thermal runaway in Lithium Ion cell in use</td>
<td>(Transmission to adjacent cells)</td>
<td>Fire / explosion / pressure wave</td>
</tr>
<tr>
<td>Fire external to package</td>
<td>Elevated cell temperatures start thermal runaway</td>
<td>Fire / explosion / pressure wave</td>
</tr>
</tbody>
</table>

Thermal Runaway
- Auto-accelerating heat generation
- Rapid temperature increase
- Expulsion of flammable gases and liquids

“Fire Hazards of Lithium-Ion Batteries”
R. E. Lyon et al., International Aircraft Systems Fire Protection Working Group Meeting October 21 to 22, 2015

Many causes of thermal runaway – electrical, mechanical, thermal
Additional challenges in all applications

• Ideally would employ chemistries and cell structures to prevent thermal runaway from starting, but increasing energy densities make this increasingly difficult, especially in applications where space is critical.

• Once thermal runaway in one cell has started then the challenge is to prevent propagation from cell-to-cell, from module-to-module and from pack to surroundings – this applies in electronics, electric vehicle, energy storage and other applications.

• In the case of aviation, the key is to extend the time needed for remediation measures to be employed where possible and to land the plane safely.

• Morgan’s understanding of the materials science required to prevent the spread of thermal energy is demonstrated in our supply of the material surrounding FDR and CVR products which is designed to survive arduous mechanical and thermal conditions

• We are also the trusted supplier of materials for surrounding living quarters in offshore oil rigs, specifically designed to protect the structure to allow additional time for operators to escape from a fire.
New product recently deployed by one major airline

A composite product incorporating FireMaster® Marine Plus Blanket

FireMaster® Battery Bag

• PED containment bag for emergency storage of defective personal electronic devices to avoid expansion of fire in case of thermal runaway of Li Ion batteries.

Pictures and videos created by and used with permission of Lufthansa/Germanwings
Moving from mitigation to prevention

- To address the EV and ESS market opportunities for LIB requires:
 - high energy density
 - low cost
 - uncompromising safety
- > 500 Wh/L
- < $125/kWh including electronics
- Intrinsic safety

- A visionary team led by Christina Lampe-Onnerud has conceived of a way to address these requirements
- Morgan is proud to be partnering with Cadenza Innovation in developing a novel engineered housing solution incorporated within the Cadenza solution
Cadenza Technology Platform: Multi-Jellyroll Architecture

- Low pressure high precision vent with flame arrestor
- Pressure disconnection device to protect overcharge
- Commoditized jellyrolls for just-in-time assembly
- Simple and lightweight case
- Shared environment and open formation
- Engineered housing material allowing non-cascading, thermal dissipation and crash absorption (ceramic composite with fire retardant)
- Thin aluminum liner protecting jelly roll
Conclusions

- Current chemistries and cell structures of the vast majority of lithium ion batteries cannot protect against the possibility of thermal runaway in certain conditions.
- It continues to be necessary for large quantities of lithium ion batteries to be transported by air.
- Although legislation continues to improve the requirements for safe air transport of lithium-ion batteries, there is still a significant and urgent need to provide additional protection for the passengers, crew and aircraft.
- As the leading global manufacturer of thermal fire protection systems, Morgan Advanced Materials is working with the air transportation industry to develop solutions to address this need.

For more information, please contact:
richard.clark@morganplc.com, +1-216-702-0218
alysha.thomas@morganplc.com, +1-706-414-3075
Questions?